

Detecting Communities

Using Link and Content Triangles

Qiuling Yan1, Baoli Li2, Dongqing Yang1

1 Department of Computer Science, Peking University, Beijing, China
 Department of Computer Science, Henan University of Technology, Zhengzhou, China

yqlpku@gmail.com,dqyang@pku.edu.cn, csblli@gmail.com

Abstract. Community detection for uncovering the hidden community structure

in large networks is an important task in analyzing complex networks. Most of

the existing methods only consider link structure in networks, where the link in-

formation is usually sparse and noisy, which may result in a poor partition of a

network. Fortunately, besides link structure, nodes, especially in social networks,

are often associated with certain symbolic or textual attributes, which we refer to

as content. Content, therefore, is expected to serve as a reasonable complement

for finding a good partition. In this work, we propose an algorithm LICT to detect

communities with link and content triangles. It works in three steps: 1) network

expansion with content similarity; 2) community detection in weighted network;

and 3) refinement by weighted triangle modularity. Experimental results on sev-

eral real data sets demonstrate that the proposed algorithm is effective for com-

munity detection and robust in the presence of link noise.

Keywords: community detection; social network analysis; link and content tri-

angles; weighted triangle modularity; spectral optimization

1 Introduction

Real networks are often organized in local clusters called communities, which can be

considered as relatively independent modules. Nodes in the same community are more

densely connected to each other than that of nodes in different communities. Commu-

nities can occur in many networked systems. For example, in social networks, a com-

munity is a group of friends that communicate with each other much frequently. In

citation networks, a community is a set of papers that have citation relationship and

focus on the same topic. In protein-protein interaction networks, communities are a

group of proteins having the same specific function within the cell. Thus Detecting

communities is crucial to understand the structural properties of networks [1] and help-

ful to improve other tasks such as link prediction [2].

Many existing methods only use network structure to detect communities. However,

there exists noise in networks, representing as incorrect links and missing links, which

weaken clustering quality. To reduce the impact of noise, content is a good comple-

ment. The similarities and differences in the content of nodes can affect the patterns of

117 Research in Computing Science 110 (2016)pp. 117–128; rec. 2015-01-23; acc. 2015-02-27

mailto:saltqiuling@163.com

linking. Thus, it is sensible to combine links and content together to detect communi-

ties. There exist some solutions aiming at this problem, which can be categorized into

two classes. One is generative probabilistic modeling [3] [4] [5] [6] [7] [8] [9]. Alt-

hough these solutions can model links and content simultaneously, they are either too

complex to be applied or only able to handle relatively small networks. Another type

of approaches is heuristic[10] [11] [12] [13]. They either embed content information

into edges or store link structure into a distance function between nodes. However,

these methods either limit content to attributes of nodes or lose the ability to discrimi-

nate different nodes when too many features of content are involved.

In this work, we propose a simple but effective algorithm to detect communities

using link and content triangles. It works in three steps. First, given a network, we add

new edges into the network according to content similarity. Then we compute weights

of edges using both structural information and content similarity. At the second step,

we use k-way spectral method to partition the weighted network. Thirdly, the partition

is refined according to weighted triangle modularity. We apply the method to several

real networks. Experimental results show that it is effective for community detection

and robust in the presence of link noise.

The paper is organized as follows: section 2 presents related work; section 3 explains

the proposed algorithm; section 4 shows the experimental results, and section 5 con-

cludes the paper.

2 Related Work

A lot of algorithms have been proposed in the past years to detect communities in a

complex network. Fortunato provides an excellent survey[14]. Here, we focus on re-

lated work in two specific directions, as they are highly relevant to our proposed algo-

rithm. One is to combine links and content to detect communities, and the other is the

usage of triangles in network analysis.

Community detection using both links and content: There are various approaches to

utilize both sources, which can be categorized into two classes. One class is generative

probabilistic modeling [3] [4] [5] [6] [7] [8] . In these works, it was assumed that either

community generates links and content or communities and content generate link struc-

ture. For example, Liu et al. [3] argued that network structure is dependent on both

communities and content. The authors in [4] merged the idea of topic model and sto-

chastic model, with the assumption that links and content share the same topic space.

Sun et al. [5] proposed a probabilistic model that clusters the objects of different types

into a common hidden space. Nallapati et al. [8] used LDA and PLSA to model citing

documents and cited documents respectively and introduced a method called Link-

PLSA-LDA to jointly model content and links. Similar to [3] [4] [8], topic model based

approaches are also proposed in [6] [7] [9].

Another popular category to combine links and content is the hybrid approaches [10]

[11] [12] [13], most of which computes pairwise distances by fusing similarities of links

and content. Akoglu et al. [10] proposed a method that compresses adjcent matrix and

118

Qiuling Yan, Baoli Li, Dongqing Yang

Research in Computing Science 110 (2016)

feature matrix simultaneously to disclose community blocks. Ruan et al. [11] con-

structed content edges and fused them into original network to get an extended network

with the same vertices. Then he sampled the network to obtain a sparse one and applied

some existing methods to partition the sampled network. Zhou et al. [12] introduced a

method named as SA-Cluster which inserts attribute nodes to a network to get an aug-

mented network. Then they used the neighborhood random walk model to estimate the

vertex closeness on the new network. Moser et al. [13] integrated the concepts of dense

subnetworks and of subspace clusters in a feature space. Then they find out subsets of

nodes that are close in the feature space. Our work is inspired by the work [11]. The

difference is that we convert pairwise similarity into edge weights and use triangles

modularity to improve partition quality.

Community detection based on triangles: Since many metrics in network analysis

can be obtained by graph triangulation, it provides insight into social network analy-

sis[15] [16] [17]. Coefficient and transitivity are representative, which are two im-

portant metrics quantifying density of sub-networks. Consequently, we can use trian-

gles to improve community results. For example, Klymko et al. [18] applies triangles

information to detect community in directed networks. Prat-Pérez et al. [19] assumes

that well-defined communities are dense in terms of triangles. Accordingly, he pro-

posed a metric called WCC to measure the quality of community results. Serrour et al.

[20] extends the modularity metric with triangles. The most prominent difference be-

tween our work and the works above is that we utilize content information as well as

structure.

3 Community Detection Using Link and Content Triangles

Let G(V, E, T) be an undirected network. V is the set of vertices (v1, v2, …, vn). E is the

edge set without weights. Each node vi in V corresponds to a content vector ti in T. Our

goal is to cluster vertices according to both network structure and content similarity,

with the assumption that the density of triangles in a cluster is larger than that outside

the cluster. In this work, we propose a method called LICT1, which consists of three

steps. First, we add edges and weights to the original network, according to link struc-

ture and content similarity. Then any state-of-art method that aims at weighted net-

works can be applied on the new network. At the last step, we refine the partition ac-

cording to weighted triangle modularity, a metric that accords with our intuition that

triangles are building blocks for community.

Now we proceed with more details.

3.1 Combining Links and Content

To combine links and content, our idea is to compute pairwise affinity of vertices

utilizing both link structure and content similarity. Then we add weights and some

1 Detecting communities using LInks and Content based on Triangles.

119

Detecting Communities Using Link and Content Triangles

Research in Computing Science 110 (2016)

edges to the original network to get a weighted one. Algorithm 1 demonstrates our idea

in detail. For each node pair (vi, vj), we compute the cosine similarity between vector

ti and tj (Line 2-4). Elements in each vector ti can be a binary value, or TF-IDF value,

or number of word occurrence. After computing pairwise content similarity, for each

node v we choose top K vertices and add edges between v and those vertices into the

original network (Line 5-7) to get a new network G’. To avoid over-expanding network,

we do not consider those similarities smaller than a threshold T. Consequently, there

exists the case that the number of new neighbors for a node is smaller than K. In addi-

tion, if there already exists an edge between node v and one of its top K vertices, we do

not need to add a new one. In line 6, Neighbors(v) is the neighbor set of node v. To

decide the value of K, the scale of a network is an indispensable factor to take into

account.

Algorithm 1: Converting a network to a weighted one

Input: a network G(V, E, T) without weights

Output: a weighted network G’(V, E’)

1. G’G

2. For each pair (vi, vj) in G’

3. Compute content similarity;

4. End For

5. For each v in V

6. Add top K vertices to Neighbors(v) according to

content similarity and add edges to G’ accordingly;

7. End For

8. For each edge (u, v) in G’

9. Weight of edge(u, v)∂ × 𝑠𝑖𝑚𝑡𝑢𝑣 + (1 − ∂) × 𝑠𝑖𝑚𝑐𝑢𝑣

10. End For

Fig. 1. Combining links and content

At line 9, we combine link structure and content similarity to compute weights for

edges in G’. 𝑠𝑖𝑚𝑡𝑢𝑣 represents structural affinity for node u and node v in the original

network G, which is computed as 𝑠𝑖𝑚𝑡𝑢𝑣 =
1

𝑙𝑠𝑝
, where 𝑙𝑠𝑝 is the length of the shortest

path between u and v in network G. Bidirectional search algorithm is used to compute

𝑠𝑖𝑚𝑡𝑢𝑣. For a node v, since 𝑙𝑠𝑝 is known as 1 between v and one of its original neighbors

in G, we only need to compute length of the shortest path between v and its new neigh-

bors. 𝑠𝑖𝑚𝑐𝑢𝑣 is the value of content similarity between u and v, which is normalized

using zero-one in globe scope. 𝜕 is a balancing coefficient between 𝑠𝑖𝑚𝑡𝑢𝑣 and

𝑠𝑖𝑚𝑐𝑢𝑣 .

It is important to note that our method can be also extended to weighted networks,

by merging the new weights with the original ones into the networks.

By now, we convert a network G(V, E, T) without weights to a weighted network

G’(V, E’). Then any state-of-art method that aims at weighted networks can be applied

on the network G’(V,E’) to get a partition of V. In this work, we use k-way spectral

120

Qiuling Yan, Baoli Li, Dongqing Yang

Research in Computing Science 110 (2016)

clustering method [21]. After clustering the vertices, we need to refine the partition

results. Our refinement method is described in next section.

3.2 Refining Clustering Results

In a network G(V, E), a triangle is a complete subnetwork that consists three nodes (u,

v, w)∈V and three edges {(u, v), (v, w), (u, w)} ∈E. Triangles play an important role in

network analysis. Many metrics of networks can be computed directly by counting tri-

angles, such as cluster coefficient [22], neighborhood density [15]. Triangles are also

useful to improve clustering quality [18] [19] [20] [23]. In our work, we assume that

density of triangles inside a community is larger than that across different communities.

Then we propose a metric called weighted triangle modularity and use it to refine the

initial partition obtained in previous section.

Weighted triangle modularity is an extension of modularity[24], which is a widely

used metric. The modularity metric is based on the assumption that there are more dense

edges in a community than in a random network with the same degree distribution.

Given a partition P={𝐶1, 𝐶2, … , 𝐶𝑘} of a network G, the generalized definition of mod-

ularity is as follows.

𝑄(𝑃) =
1

2𝑤
∑ ∑ (𝑤𝑖𝑗 −

𝑤𝑖
𝑜𝑢𝑡𝑤𝑗

𝑖𝑛

2𝑤
)𝑁

𝑗=1 𝛿(𝐶𝑖 , 𝐶𝑗)𝑁
𝑖=1 . (1)

Where 𝑤𝑖𝑗 is the weight of an edge (vi, vj). If there is no edge between vi and vj, 𝑤𝑖𝑗

is zero. 𝑤𝑖
𝑜𝑢𝑡(= ∑ 𝑤𝑖𝑗)𝑗 is the degree going from the node vi, while 𝑤𝑗

𝑖𝑛(= ∑ 𝑤𝑖𝑗)𝑖 is

the strength of links coming to the node vj. 𝐶𝑖 is the index of a community to which

node vi belongs. Finally, 𝛿(𝐶𝑖 , 𝐶𝑗) is the Kronecker function assigning to 1 if node vi

and node vj belong to the same community, 0 otherwise. The larger the 𝑄 value is, the

better the community partition is.

Through comparing density of triangles rather than density of edges, we extend mod-

ularity to get weighted triangle modularity. The formula of this metric is as follows.

𝑄(𝑃) = ∑ 𝐵𝑖𝑗𝑘𝛿(𝐶𝑖, 𝐶𝑗)𝛿(𝐶𝑗 , 𝐶𝑘)𝛿(𝐶𝑘, 𝐶𝑖)𝑖,𝑗,𝑘, . (2)

With the conditions that (𝑖, 𝑗), (𝑗, 𝑘), (𝑘, 𝑖) ∈ 𝐸 and triangle inequality holds among

𝑤𝑖𝑗 , 𝑤𝑗𝑘 and 𝑤𝑘𝑖.

In equation 2, 𝐵𝑖𝑗𝑘 is the mathematical object that evaluates difference of the triangle

density between a sub-network and a corresponding random network. We compute 𝐵𝑖𝑗𝑘

according to the following formula.

𝐵𝑖𝑗𝑘 =
1

𝑇𝐺
𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖 −

1

𝑇𝑅
(𝑤𝑖𝑤𝑗)(𝑤𝑗𝑤𝑘)(𝑤𝑘𝑤𝑖) . (3)

𝑇𝐺 is the total number of triads of nodes that form triangles in the network G. The

formula of 𝑇𝐺 is:

𝑇𝐺 = ∑ ∑ ∑ 𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖𝑘𝑗𝑖 . (4)

121

Detecting Communities Using Link and Content Triangles

Research in Computing Science 110 (2016)

 𝑇𝑅 is the counterpart of 𝑇𝐺 in null case. The formula for 𝑇𝑅 is as follows.

𝑇𝑅 = ∑ ∑ ∑ (𝑤𝑖𝑤𝑗)(𝑤𝑗𝑤𝑘)(𝑤𝑘𝑤𝑖)𝑘𝑗𝑖 . (5)

In equations 3-5, 𝑤𝑖 is the sum of weights for edges that node vi intervenes.

Although Serrour [20] also extended the modularity using triangles, he did not con-

trol conditions. We believe that those conditions are important to detect more cohesive

communities.

With weighted triangle modularity, we further refine the initial partition obtained in

previous section. The heuristic idea is to move vertices among communities to increase

the value of weighted triangle modularity. This process is repeated until 𝑄 does not

increase any more. We demonstrate the details in algorithm 2. To be noted, we use the

network obtained using algorithm 1 rather than original network in this phase.

When moving node v from a community to another, it is sensible to choose the com-

munities to which node v connect densely, rather than trying each of other communities

(Line 4). Triangle number that node v involves in a community can be set as the choos-

ing criterion.

In algorithm 2, the computation for the 𝑄 value costs mostly. Since the computation

part of 𝑄 that does not relate to node v stay unchanged, we only need to focus on the

relative change of 𝑄, which relates to two communities at most: the source community

Cs and the destiny one Cd. Let us consider the simplest case firstly that the source com-

munity Cs only contain node v. when moving node v from Cs to Cd, the relative change

of 𝑄 is computed as follows.

∆𝑄𝐼 = ∑ 𝐵𝑖𝑗𝑘𝑖,𝑗,𝑘∈𝐶′ − ∑ 𝐵𝑖𝑗𝑘𝑖,𝑗,𝑘∈𝐶𝑑
, (6)

where 𝐶′ = 𝐶𝑑 ∪ {𝑣}.

Since the relative change ∆𝑄𝐼 results from participation of node v into community

Cd, we only need to consider triads involving node v in community Cd. Thus we can

rewrite equation 6 as follows.

∆𝑄𝐼 = ∑ (
1

𝑇𝐺
𝑤𝑣𝑗𝑤𝑖𝑗𝑤𝑗𝑣 −

1

𝑇𝑅
(𝑤𝑣𝑤𝑖)(𝑤𝑖𝑤𝑗)(𝑤𝑗𝑤𝑣)) 𝑖,𝑗∈𝐶𝑑

 . (7)

With the conditions that (𝑣, 𝑗), (𝑗, 𝑣), (𝑖, 𝑗) ∈ 𝐸 and triangle inequality holds among

𝑤𝑣𝑗 , 𝑤𝑗𝑣 and 𝑤𝑖𝑗.

Now suppose that the source community Cs for node v contains other nodes. We

have the following theorem.

Theorem 1. Let 𝑃 = {𝐶1, 𝐶2, … , 𝐶𝑠, 𝐶𝑑} and 𝑃′ = {𝐶1, 𝐶2, … , 𝐶𝑠′, 𝐶𝑑′} be two parti-

tion for network G(V, E), where 𝐶𝑠
′ = 𝐶𝑠\{𝑣}, 𝐶𝑑

′ = 𝐶𝑑 ∪ {𝑣}. Then, when moving

node v from 𝐶𝑠 to 𝐶𝑑, the change of 𝑄 is computed as follows.

𝑄(𝑃′) − 𝑄(𝑃) = −∆𝑄𝐼𝑠 + ∆𝑄𝐼𝑑 . (8)Where ∆𝑄𝐼𝑠 is the change

for node v from the community {v} to be inserted into community Cs, which can be

obtained using equation 7. ∆𝑄𝐼𝑑 is the same case as ∆𝑄𝐼𝑠 except that the destination is

community 𝐶𝑑.

122

Qiuling Yan, Baoli Li, Dongqing Yang

Research in Computing Science 110 (2016)

Proof. Moving node v from 𝐶𝑠 to 𝐶𝑑 can be considered as two steps, each of which

leads to a new partition of G(V, E). For each step, we use 𝑄𝑜𝑙𝑑 and 𝑄𝑛𝑒𝑤 to represent

𝑄 for the old partition and the new one, respectively.

In the first step, node v is removed from Cs to get a community consisting only of

node v. In the second step, node v is inserted from the community {v} to community

Cd. As for the first step, suppose that ∆𝑄𝑅 is the change of 𝑄, the following formula

holds obviously.

𝑄𝑜𝑙𝑑 = 𝑄𝑛𝑒𝑤 + ∆𝑄𝐼𝑠,

Then ∆𝑄𝑅 = 𝑄𝑛𝑒𝑤−𝑄𝑜𝑙𝑑 = −∆𝑄𝐼𝑠 . Since the change of 𝑄 in the second step is

∆𝑄𝐼𝑑, equation 8 holds by combining the two steps.

Algorithm 2: Refinement

Input: partition P of a weighted network G’(V, E’)

Output: refinement partition P′
1. P′ ← 𝑃;

2. Repeat

3. For each v in V

4. candidates ← candidateComm(v, P′);
5. For each C in candidates

6. Compute ∆𝑄(𝑣, 𝑆𝑜𝑢𝑟𝑐𝑒𝐶, 𝐶) according to equation 8;

7. End For

8. Choose the candidate C* that maximizes ∆𝑄 value;

9. If ∆𝑄 > 0, move v from SourceC to C*;

10. End For

11. Until 𝑄 value does not increase

Fig. 2. The process of refinement

3.3 Complexity of Algorithms

Given a network G(V, E, T), let n be the number of nodes and m the number of edges.

We assume that the average degree in G is d=2𝑚/𝑛.

In algorithm 1, the costly part is to compute pairwise similarity of content among

vertices (Lines 2-4). The complexity for this part is O(tn2), where t is the length of

content vector. The loop in lines 5-7 is O(nK), where K is a constant given by users to

choose top K new neighbors. To compute structural affinity in line 9, the complexity is

O(bl/2) for a pair of nodes (u, v) in G’, where b is a branching factor and l is the length

of the shortest path. Thus, for the loop in lines 8-10, the complexity is O(nKbl/2). Then

the complexity of algorithm 1 is O(tn2+ nK+ nKbl/2). For a network that Kbl/2≪n, the

complexity is O(tn2). It means that computing pairwise similarity of content takes the

most time in algorithm 1.

Remember that we adopt k-way spectral optimization to get an initial partition, the

main cost results from k-means algorithm. Since the cost of other part can be negligible,

the complexity for this phase is O(nka), where a is the number of iteration for k-means.

Now we turn to algorithm 2, the refinement part. To move a node v from a commu-

nity to another one, we need to compute the change of 𝑄 value. The corresponding cost

123

Detecting Communities Using Link and Content Triangles

Research in Computing Science 110 (2016)

is O(c2), where c is the average scale of communities in a partition. In fact, to choose

candidate communities, we can adopt some heuristic schemes, rather than examining

every community. For example, voting is a feasible choice, which can reduce the cost

to O(1). Then the computation for loops in line 3-10 is O(nd2)=O(m2/n). Let r be the

number of iteration to find the best partition, the total complexity for algorithm 2 is

O(rm2/n).

To sum up, the total cost for our method is O(tn2+ nka+ rm2/n)= O(tn2). In another

word, computing content similarity costs mostly in this work.

4 Experiments

4.1 Datasets

In our experiments, we use three real datasets with different domains ranging from ci-

tation networks to social networks, all of which are treated as undirected. Each dataset

is described below.

 CORA2[25]. This is a citation network, in which each paper is considered as a node.

We randomly choose a seed and use breadth-first search to get a small network with

2527 papers and 8427 edges. The small network is used as our first dataset. We

extract title and abstract as content for each paper, which is represented as a vector

of word occurrence. Our dictionary contains 5688 words. Each paper is labeled with

a category. There are 10 classes for the chosen papers, which is defined as ground-

truth communities.

 Flickr. We use the dataset used in the work [11] as our second dataset, which was

gathered from the Flickr site. This is a user-user contacting network, which contains

16710 users and 716,063 edges among users. Tags adopted by users for photos are

used as content information. The elements of content vectors are binary. There are

184421 user groups and a user can join in several groups. We use these groups as

ground-truth communities.

 Facebook3. The dataset includes several ego-networks, consisting of 4039 nodes and

88234 edges. User profiles are used as content information, including locations, ed-

ucation information and so on. The social circles are labeled by the owners of ego-

networks. We use those social circles as ground-truth communities.

4.2 Experimental Settings

In algorithm 1, we need to decide the parameter K for choosing top K content neighbors

for each node. Since we extend original networks by adding edges according to content

similarity, we assume that the number of new edges is no more than original edges.

Specifically, we set K as 10, 50 for Cora and Flickr, respectively. We set K as 5 for

Facebook because that the average size for each ego-network is small. Besides, to filter

2 https://people.cs.umass.edu/~mccallum/data.html
3 http://snap.stanford.edu/

124

Qiuling Yan, Baoli Li, Dongqing Yang

Research in Computing Science 110 (2016)

content similarities, we set the threshold T as the average of content similarities in each

network. In algorithm 2, parameter ∂ balances the contributions of structural infor-

mation and content similarity. Since we are interested in how different ∂ influences

performance of the whole method, we would like to examine different values for ∂.

When using k-way spectral method to get an initial partition for a network, we set the

community number k as the same with that of ground truth, except the Flickr dataset.

Different from CORA and Facebook, a node in the Flickr dataset can belong to several

communities. For simplicity, we set k as 50 for the Flickr dataset.
 We choose two other methods as the baselines. One is the method proposed in this
work, without regard to content. It enables us to examine to which extent content infor-
mation contributes to community detection. We call this method LIT4 for the sake of
convenience. In the process of refinement for LIT, we set the weight as 1 for an edge.
The other baseline method is CODICIL[11], which detects communities using links and
content. Comparing our method LICT with CODICIL can help us to investigate the role
of triangles in community detection. We set parameters of CODICIL in the same way as
LICT, and also use k-way spectral method for CODICIL. Among state of art methods
that combine links and content, SA-Cluster[12] and Link-PLSA-LDA are typical. The
former is heuristic and the latter is a generative probabilistic model. Since CODICIL has
been shown to outperform the two methods, we do not compare LICT with them.

Given a predicted partition P and the ground truth P’ for a network G, we compute
average F1-score used in [26] to measure the clustering quality. Specifically, both the
predicted communities and ground-truth communities are considered as reference. After
matching predicted communities with those in ground-truth sets, we also match ground-
truth communities with predicted ones. Then the performance is measured by the aver-
age of F1-scores, which is calculated as follows:

𝐹1(𝑃, 𝑃′) =
1

2|𝑃|
∑ 𝐹1(𝐶𝑖, 𝑃′)𝐶𝑖∈𝑃 +

1

2|𝑃′|
∑ 𝐹1(𝐶𝑖 , 𝑃)𝐶𝑖∈𝑃′

𝐹1(𝐶, 𝑃) = argmax 𝐹1(𝐶, 𝑆𝑖), 𝑆𝑖 ∈ 𝑃 = {𝑆1, … , 𝑆𝑛}

F1(𝐶, 𝑆) =
2×𝑝×𝑟

𝑝+𝑟
, p =

|𝐶∩𝑆|

|𝐶|
, 𝑟 =

|𝐶∩𝑆|

|𝑆|
.

4.3 Experimental Results

First of all, we examine the clustering quality for the proposed method compared with

baselines. For the method LICT and CODICIL, we set parameter ∂ as 0.6, unless noted

otherwise. We show the result in Figure 3.

Compared with CODICIL, the proposed method LICT performs better on all of

three datasets. Although both LICT and CODICIL leverage links and content, LICT

uses triangles in community detection. The results verify our intuition that triangles

play a role for the improvement of clustering quality. On the other hand, LICT outper-

forms LIT in all cases, which shows that content information is valuable for clustering.

Besides, LIT performs better than CODICIL on Facebook. The reason is that the Fa-

cebook dataset is ego-networks, which contains more triangles than other networks.

This enables LIT to work well, in spite of ignoring content. No matter what domain of

a network is, LICT can be applied more widely than both LIT and CODICIL.

4 Detecting communities using LInk Triangles.

125

Detecting Communities Using Link and Content Triangles

Research in Computing Science 110 (2016)

Fig. 3. Performance comparison of LICT, CODICIL and LIT in term of F1 score

To investigate the impact of parameter ∂, we apply LICT on the three datasets with

∂ valued from 0.1 to 0.9, stepping by 0.1. We show the results in Figure 4. For CORA

and Flickr, we get the highest F1 scores with ∂ = 0.6, so we set ∂ = 0.6 in the rest of

experiments.

Fig. 4. Performance of LICT with ∂ valued from 0.1 to 0.9

To further investigate the role of content information, we remove some fraction of
edges randomly and apply both LICT and LIT to the obtained networks. Figure 5 shows
the relative improvement of LICT compared to LIT. For all of three datasets, when we
remove more edges, relative improvements of LICT increase. Especially for the docu-
ment network CORA, the improvement is much more obvious. Thus, when the network
becomes unreliable or contains link noise, we can use content information to improve
clustering quality.

5 Conclusion

In this work, we propose a method that combines links and content to detect communi-

ties. The method consists of three steps. First, we add edges to a network according to

126

Qiuling Yan, Baoli Li, Dongqing Yang

Research in Computing Science 110 (2016)

content similarity and convert the network to a weighted one. Then we apply k-way

spectral algorithm to get an initial partition for the weighted network. In the third step,

we refine the partition further according to weighted triangle modularity. Experimental

results on several real datasets show that the proposed method is effective for detecting

communities and robust in the presence of network noise.

Fig. 5. Relative improvement of LICT against LIT when deleting edges

In the future, we plan to improve the work from two directions. Firstly, as the two

procedures of choosing the top K nodes and refining partition with weighted triangle

modularity are time-consuming, we would like to explore how to speed up these two

parts. Secondly, we also consider how to make the proposed method applicable for

much larger networks.

Acknowledgements

Baoli Li was partly supported by the Henan Provincial Research Program on Funda-

mental and Cutting-Edge Technologies (No. 112300410007), and the High-level Talent

Foundation of Henan University of Technology (No. 2012BS027).

References

1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks:

Structure and dynamics. Physics reports 424, 175-308 (2006)

2. Chang, J., Blei, D.M.: Relational topic models for document networks. In: International

Conference on Artificial Intelligence and Statistics, pp. 81-88. (2009)

3. Liu, Y., Niculescu-Mizil, A., Gryc, W.: Topic-link LDA: joint models of topic and author

community. In: proceedings of the 26th annual international conference on machine learning,

pp. 665-672. ACM, (2009)

4. Balasubramanyan, R., Cohen, W.W.: Block-LDA: Jointly modeling entity-annotated text and

entity-entity links. In: SDM, pp. 450-461. SIAM, (2011)

127

Detecting Communities Using Link and Content Triangles

Research in Computing Science 110 (2016)

5. Sun, Y., Aggarwal, C.C., Han, J.: Relation strength-aware clustering of heterogeneous

information networks with incomplete attributes. Proceedings of the VLDB Endowment 5,

394-405 (2012)

6. Xu, Z., Ke, Y., Wang, Y., Cheng, H., Cheng, J.: A model-based approach to attributed graph

clustering. In: Proceedings of the 2012 ACM SIGMOD International Conference on

Management of Data, pp. 505-516. ACM, (2012)

7. Zhu, Y., Yan, X., Getoor, L., Moore, C.: Scalable text and link analysis with mixed-topic

link models. In: Proceedings of the 19th ACM SIGKDD international conference on

Knowledge discovery and data mining, pp. 473-481. ACM, (2013)

8. Nallapati, R.M., Ahmed, A., Xing, E.P., Cohen, W.W.: Joint latent topic models for text and

citations. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 542-550. ACM, (2008)

9. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node attributes.

In: Data Mining (ICDM), 2013 IEEE 13th International Conference on, pp. 1151-1156.

IEEE, (2013)

10. Akoglu, L., Tong, H., Meeder, B., Faloutsos, C.: PICS: Parameter-free Identification of

Cohesive Subgroups in Large Attributed Graphs. In: SDM, pp. 439-450. Citeseer, (2012)

11. Ruan, Y., Fuhry, D., Parthasarathy, S.: Efficient community detection in large networks using

content and links. In: Proceedings of the 22nd international conference on World Wide Web,

pp. 1089-1098. International World Wide Web Conferences Steering Committee, (2013)

12. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities.

Proceedings of the VLDB Endowment 2, 718-729 (2009)

13. Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining Cohesive Patterns from Graphs with

Feature Vectors. In: SDM, pp. 593-604. SIAM, (2009)

14. Fortunato, S.: Community detection in graphs. Physics Reports 486, 75-174 (2010)

15. Schank, T.: Algorithmic aspects of triangle-based network analysis. vol. PhD. Universit¨at

Karlsruhe (2007)

16. Chu, S., Cheng, J.: Triangle listing in massive networks and its applications. In: Proceedings

of the 17th ACM SIGKDD international conference on Knowledge discovery and data

mining. (2011)

17. Wang, N., Zhang, J., Tan, K.-L., Tung, A.K.H.: On triangulation-based dense neighborhood

graph discovery. Proceedings of the VLDB Endowment (2010)

18. Klymko, C., Gleich, D., Kolda, T.G.: Using Triangles to Improve Community Detection in

Directed Networks. arXiv preprint arXiv:1404.5874 (2014)

19. Prat-Pérez, A., Dominguez-Sal, D., Brunat, J.M., Larriba-Pey, J.-L.: Shaping communities

out of triangles. In: Proceedings of the 21st ACM international conference on Information

and knowledge management, pp. 1677-1681. ACM, (2012)

20. Serrour, B., Arenas, A., Gómez, S.: Detecting communities of triangles in complex networks

using spectral optimization. Computer Communications 34, 629-634 (2011)

21. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. NIPS,

pp. 849-856 (2001)

22. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Physical review

E 65, 026107 (2002)

23. Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.-L.: High quality, scalable and parallel

community detection for large real graphs. In: Proceedings of the 23rd international

conference on World wide web. (2014)

24. Newman, M.E.: Analysis of weighted networks. Physical Review E 70, 056131 (2004)

25. McCallum, A., Nigam, K., Rennie, J., Seymore, K.: Automating the Construction of Internet

Portals with Machine Learning. Information Retrieval Journal 3, 127--163 (2000)

26. Yang, J., Leskovec, J.: Overlapping community detection at scale: a nonnegative matrix

factorization approach. In: Proceedings of the sixth ACM international conference on Web

search and data mining, pp. 587-596. ACM, (2013)

128

Qiuling Yan, Baoli Li, Dongqing Yang

Research in Computing Science 110 (2016)

