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Abstract. Community detection for uncovering the hidden community structure 

in large networks is an important task in analyzing complex networks. Most of 

the existing methods only consider link structure in networks, where the link in-

formation is usually sparse and noisy, which may result in a poor partition of a 

network. Fortunately,  besides link structure, nodes, especially in social networks, 

are often associated with certain symbolic or textual attributes, which we refer to 

as content. Content, therefore, is expected to serve as a reasonable complement 

for finding a good partition. In this work, we propose an algorithm LICT to detect 

communities with  link and content triangles. It works in three steps: 1) network 

expansion with content similarity; 2) community detection in weighted network; 

and 3) refinement by weighted triangle modularity. Experimental results on sev-

eral real data sets demonstrate that the proposed algorithm is effective for com-

munity detection and robust in the presence of link noise. 

Keywords: community detection; social network analysis; link and content tri-

angles; weighted triangle modularity; spectral optimization 

1 Introduction 

Real networks are often organized in local clusters called communities, which can be 

considered as relatively independent modules. Nodes in the same community are more 

densely connected to each other than that of nodes in different communities. Commu-

nities can occur in many networked systems. For example, in social networks, a com-

munity is a group of friends that communicate with each other much frequently. In 

citation networks, a community is a set of papers that have citation relationship and 

focus on the same topic. In protein-protein interaction networks, communities are a 

group of proteins having the same specific function within the cell. Thus Detecting 

communities is crucial to understand the structural properties of networks [1] and help-

ful to improve other tasks such as link prediction [2]. 

Many existing methods only use network structure to detect communities. However, 

there exists noise in networks, representing as incorrect links and missing links, which 

weaken clustering quality. To reduce the impact of noise, content is a good comple-

ment. The similarities and differences in the content of nodes can affect the patterns of 
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linking. Thus, it is sensible to combine links and content together to detect communi-

ties. There exist some solutions aiming at this problem, which can be categorized into 

two classes. One is generative probabilistic modeling [3] [4] [5] [6] [7] [8] [9]. Alt-

hough these solutions can model links and content simultaneously, they are either too 

complex to be applied or only able to handle relatively small networks. Another type 

of approaches is heuristic[10] [11] [12] [13]. They either embed content information 

into edges or store link structure into a distance function between nodes. However, 

these methods either limit content to attributes of nodes or lose the ability to discrimi-

nate different nodes when too many features of content are involved. 

In this work, we propose a simple but effective algorithm to detect communities 

using link and content triangles. It works in three steps. First, given a network, we add 

new edges into the network according to content similarity. Then we compute weights 

of edges using both structural information and content similarity. At the second step, 

we use k-way spectral method to partition the weighted network. Thirdly, the partition 

is refined according to weighted triangle modularity. We apply the method to several 

real networks. Experimental results show that it is effective for community detection 

and robust in the presence of link noise. 

The paper is organized as follows:  section 2 presents related work; section 3 explains 

the proposed algorithm; section 4 shows the experimental results, and section 5 con-

cludes the paper. 

2 Related Work 

A lot of algorithms have been proposed in the past years to detect communities in a 

complex network. Fortunato provides an excellent survey[14]. Here, we focus on re-

lated work in two specific directions, as they are highly relevant to our proposed algo-

rithm. One is to combine links and content to detect communities, and the other is the 

usage of triangles in network analysis. 

Community detection using both links and content: There are various approaches to 

utilize both sources, which can be categorized into two classes. One class is generative 

probabilistic modeling [3] [4] [5] [6] [7] [8] . In these works, it was assumed that either 

community generates links and content or communities and content generate link struc-

ture. For example, Liu et al. [3] argued that network structure is dependent on both 

communities and content. The authors in [4] merged the idea of topic model and sto-

chastic model, with the assumption that links and content share the same topic space. 

Sun et al. [5] proposed a probabilistic model that clusters the objects of different types  

into a common hidden space. Nallapati et al. [8] used LDA and PLSA to model citing 

documents and cited documents respectively and introduced a method called Link-

PLSA-LDA to jointly model content and links. Similar to [3] [4] [8], topic model based 

approaches are also proposed in [6] [7] [9]. 

Another popular category to combine links and content is the hybrid approaches [10] 

[11] [12] [13], most of which computes pairwise distances by fusing similarities of links 

and content. Akoglu et al. [10] proposed a method that compresses adjcent matrix and 
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feature matrix simultaneously to disclose community blocks. Ruan et al. [11] con-

structed content edges and fused them into original network to get an extended network 

with the same vertices. Then he sampled the network to obtain a sparse one and applied 

some existing methods to partition the sampled network. Zhou et al. [12] introduced a 

method named as SA-Cluster which inserts attribute nodes to a network to get an aug-

mented network. Then they used the neighborhood random walk model to estimate the 

vertex closeness on the new network. Moser et al. [13] integrated the concepts of dense 

subnetworks and of subspace clusters in a feature space. Then they find out subsets of 

nodes that are close in the feature space. Our work is inspired by the work [11]. The 

difference is that we convert pairwise similarity into edge weights and use triangles 

modularity to improve partition quality. 

Community detection based on triangles: Since many metrics in network analysis 

can be obtained by graph triangulation, it provides insight into social network analy-

sis[15] [16] [17]. Coefficient and transitivity are representative, which are two im-

portant metrics quantifying density of sub-networks. Consequently, we can use trian-

gles to improve community results. For example, Klymko et al. [18] applies triangles 

information to detect community in directed networks. Prat-Pérez et al. [19] assumes 

that well-defined communities are dense in terms of triangles. Accordingly, he pro-

posed a metric called WCC to measure the quality of community results. Serrour et al. 

[20] extends the modularity metric with triangles. The most prominent difference be-

tween our work and the works above is that we utilize content information as well as 

structure. 

3 Community Detection Using Link and Content Triangles 

Let G(V, E, T) be an undirected network. V is the set of vertices (v1, v2, …, vn). E is the 

edge set without weights. Each node vi in V corresponds to a content vector ti in T. Our 

goal is to cluster vertices according to both network structure and content similarity, 

with the assumption that the density of triangles in a cluster is larger than that outside 

the cluster. In this work, we propose a method called LICT1, which consists of three 

steps. First, we add edges and weights to the original network, according to link struc-

ture and content similarity. Then any state-of-art method that aims at weighted net-

works can be applied on the new network. At the last step, we refine the partition ac-

cording to weighted triangle modularity, a metric that accords with our intuition that 

triangles are building blocks for community. 

Now we proceed with more details. 

3.1 Combining Links and Content 

To combine links and content, our idea is to compute pairwise affinity of vertices 

utilizing both link structure and content similarity. Then we add weights and some 

                                                           
1 Detecting communities using LInks and Content based on Triangles. 
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edges to the original network to get a weighted one. Algorithm 1 demonstrates our idea 

in detail. For each node pair (vi, vj), we compute the cosine similarity between vector 

ti and tj (Line 2-4).  Elements in each vector ti can be a binary value, or TF-IDF value, 

or number of word occurrence. After computing pairwise content similarity, for each 

node v we choose top K vertices and add edges between v and those vertices into the 

original network (Line 5-7) to get a new network G’. To avoid over-expanding network, 

we do not consider those similarities smaller than a threshold T. Consequently, there 

exists the case that the number of new neighbors for a node is smaller than K. In addi-

tion, if there already exists an edge between node v and one of its top K vertices, we do 

not need to add a new one. In line 6, Neighbors(v) is the neighbor set of node v. To 

decide the value of K, the scale of a network is an indispensable factor to take into 

account. 

Algorithm 1: Converting a network to a weighted one 

Input: a network G(V, E, T) without weights 

Output: a weighted network G’(V, E’) 

1.  G’G 

2.  For each pair (vi, vj) in G’ 

3.   Compute content similarity; 

4.  End For 

5.  For each v in V 

6.   Add  top K vertices to Neighbors(v) according to  

content similarity and add edges to G’ accordingly; 

7.  End For 

8.  For each edge (u, v) in G’  

9.   Weight of edge(u, v)∂ × 𝑠𝑖𝑚𝑡𝑢𝑣 + (1 − ∂) × 𝑠𝑖𝑚𝑐𝑢𝑣 

10. End For 

Fig. 1. Combining links and content 

At line 9, we combine link structure and content similarity to compute weights for 

edges in G’. 𝑠𝑖𝑚𝑡𝑢𝑣 represents structural affinity for node u and node v in the original 

network G, which is computed as 𝑠𝑖𝑚𝑡𝑢𝑣 =
1

𝑙𝑠𝑝
, where 𝑙𝑠𝑝 is the length of the shortest 

path between u and v in network G. Bidirectional search algorithm is used to compute 

𝑠𝑖𝑚𝑡𝑢𝑣. For a node v, since 𝑙𝑠𝑝 is known as 1 between v and one of its original neighbors 

in G, we only need to compute length of the shortest path between v and its new neigh-

bors. 𝑠𝑖𝑚𝑐𝑢𝑣  is the value of content similarity between u and v, which is normalized 

using zero-one in globe scope.  𝜕  is a balancing coefficient between 𝑠𝑖𝑚𝑡𝑢𝑣  and 

𝑠𝑖𝑚𝑐𝑢𝑣 .  

It is important to note that our method can be also extended to weighted networks, 

by merging the new weights with the original ones into the networks. 

By now, we convert a network G(V, E, T) without weights to a weighted network 

G’(V, E’). Then any state-of-art method that aims at weighted networks can be applied 

on the network G’(V,E’) to get a partition of V. In this work, we use k-way spectral 
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clustering method [21]. After clustering the vertices, we need to refine the partition 

results. Our refinement method is described in next section. 

3.2 Refining Clustering Results 

In a network G(V, E), a triangle is a complete subnetwork that consists three nodes (u, 

v, w)∈V and three edges {(u, v), (v, w), (u, w)} ∈E. Triangles play an important role in 

network analysis. Many metrics of networks can be computed directly by counting tri-

angles, such as cluster coefficient [22], neighborhood density [15]. Triangles are also 

useful to improve clustering quality [18] [19] [20] [23]. In our work, we assume that 

density of triangles inside a community is larger than that across different communities. 

Then we propose a metric called weighted triangle modularity and use it to refine the 

initial partition obtained in previous section.  

Weighted triangle modularity is an extension of modularity[24], which is a widely 

used metric. The modularity metric is based on the assumption that there are more dense 

edges in a community than in a random network with the same degree distribution. 

Given a partition P={𝐶1, 𝐶2, … , 𝐶𝑘} of a network G, the generalized definition of mod-

ularity is as follows. 

𝑄(𝑃) =
1

2𝑤
∑ ∑ (𝑤𝑖𝑗 −

𝑤𝑖
𝑜𝑢𝑡𝑤𝑗

𝑖𝑛

2𝑤
)𝑁

𝑗=1 𝛿(𝐶𝑖 , 𝐶𝑗)𝑁
𝑖=1  . (1) 

Where 𝑤𝑖𝑗 is the weight of an edge (vi, vj). If there is no edge between vi and vj, 𝑤𝑖𝑗 

is zero. 𝑤𝑖
𝑜𝑢𝑡(= ∑ 𝑤𝑖𝑗)𝑗  is the degree going from the node vi, while  𝑤𝑗

𝑖𝑛(= ∑ 𝑤𝑖𝑗)𝑖  is 

the strength of links coming to the node vj. 𝐶𝑖 is the index of a community to which 

node vi belongs. Finally, 𝛿(𝐶𝑖 , 𝐶𝑗) is the Kronecker function assigning to 1 if node vi 

and node vj belong to the same community, 0 otherwise. The larger the 𝑄 value is, the 

better the community partition is.  

Through comparing density of triangles rather than density of edges, we extend mod-

ularity to get weighted triangle modularity. The formula of this metric is as follows. 

𝑄(𝑃) = ∑ 𝐵𝑖𝑗𝑘𝛿(𝐶𝑖, 𝐶𝑗)𝛿(𝐶𝑗 , 𝐶𝑘)𝛿(𝐶𝑘, 𝐶𝑖)𝑖,𝑗,𝑘,   .                   (2) 

With the conditions that (𝑖, 𝑗), (𝑗, 𝑘), (𝑘, 𝑖) ∈ 𝐸 and triangle inequality holds among 

𝑤𝑖𝑗 , 𝑤𝑗𝑘  and 𝑤𝑘𝑖. 

In equation 2, 𝐵𝑖𝑗𝑘 is the mathematical object that evaluates difference of the triangle 

density between a sub-network and a corresponding random network. We compute 𝐵𝑖𝑗𝑘 

according to the following formula. 

𝐵𝑖𝑗𝑘 =
1

𝑇𝐺
𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖 −

1

𝑇𝑅
(𝑤𝑖𝑤𝑗)(𝑤𝑗𝑤𝑘)(𝑤𝑘𝑤𝑖)  . (3) 

𝑇𝐺  is the total number of triads of nodes that form triangles in the network G. The 

formula of 𝑇𝐺  is: 

𝑇𝐺 = ∑ ∑ ∑ 𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖𝑘𝑗𝑖   . (4) 
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 𝑇𝑅 is the counterpart of  𝑇𝐺   in null case. The formula for 𝑇𝑅 is as follows. 

𝑇𝑅 = ∑ ∑ ∑ (𝑤𝑖𝑤𝑗)(𝑤𝑗𝑤𝑘)(𝑤𝑘𝑤𝑖)𝑘𝑗𝑖   . (5) 

In equations 3-5, 𝑤𝑖  is the sum of weights for edges that node vi intervenes. 

Although Serrour [20] also extended the modularity using triangles, he did not con-

trol conditions.  We believe that those conditions are important to detect more cohesive 

communities. 

With weighted triangle modularity, we further refine the initial partition obtained in 

previous section. The heuristic idea is to move vertices among communities to increase 

the value of weighted triangle modularity. This process is repeated until 𝑄 does not 

increase any more. We demonstrate the details in algorithm 2.  To be noted, we use the 

network obtained using algorithm 1 rather than original network in this phase. 

When moving node v from a community to another, it is sensible to choose the com-

munities to which node v connect densely, rather than trying each of other communities 

(Line 4). Triangle number that node v involves in a community can be set as the choos-

ing criterion.   

In algorithm 2, the computation for the 𝑄 value costs mostly.  Since the computation 

part of 𝑄 that does not relate to node v stay unchanged, we only need to focus on the 

relative change of 𝑄, which relates to two communities at most: the source community 

Cs and the destiny one Cd. Let us consider the simplest case firstly that the source com-

munity Cs only contain node v. when moving node v from Cs to Cd, the relative change 

of 𝑄 is computed as follows. 

∆𝑄𝐼 = ∑ 𝐵𝑖𝑗𝑘𝑖,𝑗,𝑘∈𝐶′ − ∑ 𝐵𝑖𝑗𝑘𝑖,𝑗,𝑘∈𝐶𝑑
, (6) 

where 𝐶′ = 𝐶𝑑 ∪ {𝑣}. 

Since the relative change  ∆𝑄𝐼  results from participation of node v into community 

Cd, we only need to consider triads involving node v in community Cd. Thus we can 

rewrite equation 6 as follows. 

∆𝑄𝐼 = ∑ (
1

𝑇𝐺
𝑤𝑣𝑗𝑤𝑖𝑗𝑤𝑗𝑣 −

1

𝑇𝑅
(𝑤𝑣𝑤𝑖)(𝑤𝑖𝑤𝑗)(𝑤𝑗𝑤𝑣)) 𝑖,𝑗∈𝐶𝑑

 .          (7) 

With the conditions that (𝑣, 𝑗), (𝑗, 𝑣), (𝑖, 𝑗) ∈ 𝐸 and triangle inequality holds among 

𝑤𝑣𝑗 , 𝑤𝑗𝑣  and 𝑤𝑖𝑗. 

Now suppose that the source community Cs for node v contains other nodes. We 

have the following theorem. 

Theorem 1. Let 𝑃 = {𝐶1, 𝐶2, … , 𝐶𝑠, 𝐶𝑑} and 𝑃′ = {𝐶1, 𝐶2, … , 𝐶𝑠′, 𝐶𝑑′} be two parti-

tion for network G(V, E), where 𝐶𝑠
′ = 𝐶𝑠\{𝑣}, 𝐶𝑑

′ = 𝐶𝑑 ∪ {𝑣}. Then, when moving 

node v from 𝐶𝑠 to 𝐶𝑑, the change of 𝑄 is computed as follows.  

𝑄(𝑃′) − 𝑄(𝑃) = −∆𝑄𝐼𝑠 + ∆𝑄𝐼𝑑  .                                      (8)Where ∆𝑄𝐼𝑠 is the change 

for node v from the community {v} to be inserted into community Cs, which can be 

obtained using equation 7. ∆𝑄𝐼𝑑 is the same case as ∆𝑄𝐼𝑠 except that the destination is 

community 𝐶𝑑. 
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Proof. Moving node v from 𝐶𝑠 to 𝐶𝑑 can be considered as two steps, each of which 

leads to a new partition of G(V, E).  For each step, we use 𝑄𝑜𝑙𝑑  and 𝑄𝑛𝑒𝑤 to represent 

𝑄 for the old partition and the new one, respectively. 

In the first step, node v is removed from Cs to get a community consisting only of 

node v. In the second step, node v is inserted from the community {v} to community 

Cd. As for the first step, suppose that ∆𝑄𝑅  is the change of 𝑄,  the following formula 

holds obviously.  

𝑄𝑜𝑙𝑑 = 𝑄𝑛𝑒𝑤 + ∆𝑄𝐼𝑠, 

Then ∆𝑄𝑅 = 𝑄𝑛𝑒𝑤−𝑄𝑜𝑙𝑑 = −∆𝑄𝐼𝑠 . Since the change of 𝑄  in the second step is 

∆𝑄𝐼𝑑, equation 8 holds by combining the two steps. 

Algorithm 2: Refinement 

Input: partition P of a weighted network G’(V, E’) 

Output: refinement partition P′ 
1.  P′ ← 𝑃; 

2.  Repeat 

3. For each v in V  

4. candidates ← candidateComm(v, P′); 
5. For each C in candidates 

6. Compute ∆𝑄(𝑣, 𝑆𝑜𝑢𝑟𝑐𝑒𝐶, 𝐶)  according to equation 8;  

7. End For 

8. Choose the candidate C* that maximizes ∆𝑄 value; 

9. If ∆𝑄 > 0, move v from SourceC to C*; 

10. End For 

11.  Until 𝑄 value does not increase 

Fig. 2. The process of refinement 

3.3 Complexity of Algorithms 

Given a network G(V, E, T), let n be the number of nodes and m the number of edges. 

We assume that the average degree in G is d=2𝑚/𝑛. 

In algorithm 1, the costly part is to compute pairwise similarity of content among 

vertices (Lines 2-4). The complexity for this part is O(tn2), where t is the length of 

content vector. The loop in lines 5-7 is O(nK), where K is a constant given by users to 

choose top K new neighbors. To compute structural affinity in line 9, the complexity is 

O(bl/2) for a pair of nodes (u, v) in G’, where b is a branching factor and l is the length 

of the shortest path. Thus, for the loop in lines 8-10, the complexity is O(nKbl/2). Then 

the complexity of algorithm 1 is O(tn2+ nK+ nKbl/2). For a network that Kbl/2≪n, the 

complexity is O(tn2). It means that computing pairwise similarity of content takes the 

most time in algorithm 1. 

Remember that we adopt k-way spectral optimization to get an initial partition, the 

main cost results from k-means algorithm. Since the cost of other part can be negligible, 

the complexity for this phase is O(nka), where a is the number of iteration for k-means. 

Now we turn to algorithm 2, the refinement part. To move a node v from a commu-

nity to another one, we need to compute the change of 𝑄 value. The corresponding cost 
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is O(c2), where c is the average scale of communities in a partition. In fact, to choose 

candidate communities, we can adopt some heuristic schemes, rather than examining 

every community. For example, voting is a feasible choice, which can reduce the cost 

to O(1). Then the computation for loops in line 3-10 is O(nd2)=O(m2/n). Let r be the 

number of iteration to find the best partition, the total complexity for algorithm 2 is 

O(rm2/n). 

To sum up, the total cost for our method is O(tn2+ nka+ rm2/n)= O(tn2). In another 

word, computing content similarity costs mostly in this work. 

4 Experiments 

4.1 Datasets 

In our experiments, we use three real datasets with different domains ranging from ci-

tation networks to social networks, all of which are treated as undirected. Each dataset 

is described below. 

 CORA2[25]. This is a citation network, in which each paper is considered as a node. 

We randomly choose a seed and use breadth-first search to get a small network with 

2527 papers and 8427 edges. The small network is used as our first dataset. We 

extract title and abstract as content for each paper, which is represented as a vector 

of word occurrence. Our dictionary contains 5688 words. Each paper is labeled with 

a category. There are 10 classes for the chosen papers, which is defined as ground-

truth communities. 

 Flickr. We use the dataset used in the work [11] as our second dataset, which was 

gathered from the Flickr site. This is a user-user contacting network, which contains 

16710 users and 716,063 edges among users. Tags adopted by users for photos are 

used as content information. The elements of content vectors are binary. There are 

184421 user groups and a user can join in several groups.  We use these groups as 

ground-truth communities. 

 Facebook3. The dataset includes several ego-networks, consisting of 4039 nodes and 

88234 edges. User profiles are used as content information, including locations, ed-

ucation information and so on. The social circles are labeled by the owners of ego-

networks. We use those social circles as ground-truth communities.  

4.2 Experimental Settings 

In algorithm 1, we need to decide the parameter K for choosing top K content neighbors 

for each node. Since we extend original networks by adding edges according to content 

similarity, we assume that the number of new edges is no more than original edges. 

Specifically, we set K as 10, 50 for Cora and Flickr, respectively. We set K as 5 for 

Facebook because that the average size for each ego-network is small. Besides, to filter 

                                                           
2 https://people.cs.umass.edu/~mccallum/data.html 
3 http://snap.stanford.edu/ 
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content similarities, we set the threshold T as the average of content similarities in each 

network. In algorithm 2, parameter ∂ balances the contributions of structural infor-

mation and content similarity. Since we are interested in how different ∂ influences 

performance of the whole method, we would like to examine different values for ∂. 

When using k-way spectral method to get an initial partition for a network, we set the 

community number k as the same with that of ground truth, except the Flickr dataset. 

Different from CORA and Facebook, a node in the Flickr dataset can belong to several 

communities. For simplicity, we set k as 50 for the Flickr dataset.  
 We choose two other methods as the baselines. One is the method proposed in this 
work, without regard to content. It enables us to examine to which extent content infor-
mation contributes to community detection. We call this method LIT4 for the sake of 
convenience.  In the process of refinement for LIT, we set the weight as 1 for an edge. 
The other baseline method is CODICIL[11], which detects communities using links and 
content. Comparing our method LICT with CODICIL can help us to investigate the role 
of triangles in community detection. We set parameters of CODICIL in the same way as 
LICT, and also use k-way spectral method for CODICIL. Among state of art methods 
that combine links and content, SA-Cluster[12] and Link-PLSA-LDA are typical. The 
former is heuristic and the latter is a generative probabilistic model. Since CODICIL has 
been shown to outperform the two methods, we do not compare LICT with them. 

Given a predicted partition P and the ground truth P’ for a network G, we compute 
average F1-score used in [26] to measure the clustering quality. Specifically, both the 
predicted communities and ground-truth communities are considered as reference. After 
matching predicted communities with those in ground-truth sets, we also match ground-
truth communities with predicted ones. Then the performance is measured by the aver-
age of F1-scores, which is calculated as follows:  

𝐹1(𝑃, 𝑃′) =
1

2|𝑃|
∑ 𝐹1(𝐶𝑖, 𝑃′)𝐶𝑖∈𝑃 +

1

2|𝑃′|
∑ 𝐹1(𝐶𝑖 , 𝑃)𝐶𝑖∈𝑃′   

𝐹1(𝐶, 𝑃) = argmax 𝐹1(𝐶, 𝑆𝑖), 𝑆𝑖 ∈ 𝑃 = {𝑆1, … , 𝑆𝑛} 

F1(𝐶, 𝑆) =
2×𝑝×𝑟

𝑝+𝑟
, p =

|𝐶∩𝑆|

|𝐶|
, 𝑟 =

|𝐶∩𝑆|

|𝑆|
. 

4.3 Experimental Results 

First of all, we examine the clustering quality for the proposed method compared with 

baselines. For the method LICT and CODICIL, we set parameter ∂ as 0.6, unless noted 

otherwise. We show the result in Figure 3. 

Compared with CODICIL, the proposed method LICT performs better on all of 

three datasets. Although both LICT and CODICIL leverage links and content, LICT 

uses triangles in community detection. The results verify our intuition that triangles 

play a role for the improvement of clustering quality. On the other hand, LICT outper-

forms LIT in all cases, which shows that content information is valuable for clustering. 

Besides, LIT performs better than CODICIL on Facebook.  The reason is that the Fa-

cebook dataset is ego-networks, which contains more triangles than other networks. 

This enables LIT to work well, in spite of ignoring content. No matter what domain of 

a network is, LICT can be applied more widely than both LIT and CODICIL. 

                                                           
4 Detecting communities using LInk Triangles. 
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Fig. 3. Performance comparison of LICT, CODICIL and LIT in term of F1 score 

To investigate the impact of parameter ∂, we apply LICT on the three datasets with 

∂ valued from 0.1 to 0.9, stepping by 0.1. We show the results in Figure 4. For CORA 

and Flickr, we get the highest F1 scores with ∂ = 0.6, so we set ∂ = 0.6 in the rest of 

experiments.  

 

Fig. 4. Performance of LICT with ∂ valued from 0.1 to 0.9 

To further investigate the role of content information, we remove some fraction of 
edges randomly and apply both LICT and LIT to the obtained networks. Figure 5 shows 
the relative improvement of LICT compared to LIT. For all of three datasets, when we 
remove more edges, relative improvements of LICT increase. Especially for the docu-
ment network CORA, the improvement is much more obvious. Thus, when the network 
becomes unreliable or contains link noise, we can use content information to improve 
clustering quality. 

5 Conclusion 

In this work, we propose a method that combines links and content to detect communi-

ties. The method consists of three steps. First, we add edges to a network according to 
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content similarity and convert the network to a weighted one. Then we apply k-way 

spectral algorithm to get an initial partition for the weighted network. In the third step, 

we refine the partition further according to weighted triangle modularity.  Experimental 

results on several real datasets show that the proposed method is effective for detecting 

communities and robust in the presence of network noise.  

 

Fig. 5. Relative improvement of LICT against LIT when deleting edges 

In the future, we plan to improve the work from two directions. Firstly, as the two 

procedures of  choosing the top K nodes and refining partition with weighted triangle 

modularity are time-consuming, we would like to explore how to speed up these two 

parts. Secondly, we also consider how to make the proposed method applicable for  

much larger networks. 
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